Pearson线性相关性分析常用来定量描述两个定量变量间直线相关的傲艟茏慕方向和密切程度。Pearson线性相关性分析只能用于两个定量变量之间的分析,而且要嫫绑臾潜求两个变量都呈正太分布,而且是随机变量,并不是人为控制的变量(例如给不同的小鼠不同的给药剂量,其中的的不同剂量就是人为非随机变量),其他注意事项请看本条经验末尾。我们以一组学生考试成绩为例,分析学生的历史成绩和综合成绩之间是否有线性关系以及密切程度。
工具/原料
SPSS
方法/步骤
1、在进行Pearson直线相关分析前我们需要先将历史成绩和综合成绩绘制在一个散点图内水貔藻疽,观察我们的数据是否可以进行Pearso荏鱿胫协n线性相关性分析。点击“图形”-“图表构建器”,在弹出的对话框中点击“确定”。(如果没有弹出图中对话框则忽略,直接下一步)
2、在“图标构建器”中选择“散点图”,然后选择“简单散点图”;然后将左边的“历史”和“地理”拖到X和Y轴上(顺序可调换),然后点击确定。
3、可以得到如下图的结果,我们可以看到,图中的散点分布呈一个椭圆型,散点有线性趋势,说明我们是可以进行线性相关性分析。(这只是一个简单的初步判断)。
4、回到数据视图,点击“分析”-“相关”-“双变量”;
5、在弹出的对话框中将“历史”和“综合”选入到右边的变量框中,下方是相关系数选择“Pearson”,点击“确定”,输出结果。
6、在结果中我们可以看到,“历史”和“综合”的相关系数是0.841,即|r|=0.84龀音孵茧1;右上角有两个星锔鼐抻耄号,左下角有注明“**"表示相关性在0.01上是显著的,说明"历史"和“综合”的相关性是显著的;我们一般认为相关系数|r|在0.8-1.0之间是极强相关;0.6-0.8之间是强相关;0.4-0.6之间是中等程度相关;0.2-0.4之间是弱相关;0.0-0.2则是极弱相关或无相关。结果论文中的表达方式如图。
7、注意1:绘制散点图只是一个简单的判断,如果你的散点图不是呈椭圆型,那么你最后的结果可能是相关程度不高或者P>0.05,都说明他们之间相关性太弱或不存在线性相关关系。
8、注意2:分层资料不能随便合并,例如下图(A)中,将原本具有相关性的资料合并后造成无相关性的假象;图(B)将两个无相关性的样本合并后造成正相关的假象。
9、注意3:出现离群点的时候要谨慎使用相关性分析,如图(C)中的这个明显离群的点,计算的时候包含和不包含对结论会产生很大的影响,甚至得出相反的结论,对于这种明显离群的点我们要认真核对数据的收集和录入过程,或者重复实验。