定积抵足谛垴分从1到1是0。
数字和数据不同,因为定积分就是和的极限,将积分区间[0,1]分成n等器皆阄诟分,则△xi=1/n,对分区间[i-1/n,i/n],取ξi为i/n,则f(ξi)△xi=f(i/n)*1/n,求和的极限limΣf(ξi)△xi=limΣf(i/n)*1/n,根据定积分的定义,就得到上述结果。
分点问题
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距是相等的。但是必须指出,即使不相等,积分值仍然相同。