1.普遍的海伦公式霄膀攴褂
在网上搜索了一下,关于计算三角形面积的算法,大多采用的是海伦公式,即:
<禊诬娱飑p>2.为什么不建议使用海伦公式
但是这条公式在实际开发中运用会存在很多问题,例如:这条公式存在着一个根号,使算法的效率降低了(涉及到了复杂的数学库运算以及浮点数的出现).还有在实际运用中大多数给出的是三角形的3个顶点的坐标,而不是3条边的长度.这意味着如果使用海伦公式进行计算将要开3次根号来计算3条边的长度.然后再求面积,使程序的效率大大的降低了.
3.向量的叉积
也许许多了解过向量的朋友应该会知道,向量的叉积的一个几何意义,就是向量a和向量b的叉积的绝对值表示以向量a和向量b为两边形成的平行四边形的面积.即:
S=∣a×b∣
S表示以向量a和向量b为两边形成的平行四边形的面积
以此类推就可以得到(1/2)*S就可以表示以向量a和向量b为两边形成的三角形的面积.
4.具体的实现
假设三角形的3的顶点分别为P1(x1,y1),P2(x2,y2),P3(x3,y3)
则向量a就可以表示为(x2-x1,y2-y1)
向量b就可以表示为(x3-x1,y3-y1)
根据二维向量叉积的运算
∣a×b|=(x2-x1)(y3-y1)-(y2-y1)(x3-x1)
则这个三角形的面积
S=|((x2-x1)*(y3-y1)-(y2-y1)*(x3-x1))/2|
5.Java代码的实现
直接贴上Java代码:
/**
*三角形类
*/
publicclassTriangle{
/**
*测试方法
*/
publicstaticvoidmain(String[]args){
//计算一个由P1(0,0)P2(1,0)P3(0,1)组成的三角形的面积
System.out.println(Area(0,0,1,0,0,1));
}
/**
*三角形面积
*/
publicstaticfloatArea(intx1,inty1,intx2,inty2,intx3,inty3){
floatresult=((x2-x1)*(y3-y1)-(y2-y1)*(x3-x1))/2.0f;
returnresult>0?result:-result;
}
}
TheEnd
@航行刘2014/05/11